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∗Abstract:This investigation is motivated by communication effects such as delays and information loss in control
loops on data travelling along wireless channels. The state-space model withk-step-lags in observations is trans-
formed to have no latency and expanded on a finite horizon ofN most recent data points. An analysis of error is
provided for a novel unbiased finite impulse response (UFIR) filtering algorithm developed for discrete-time state-
space models with time-stamped discretely delayed and missing data. A comparative analysis with the standard
Kalman filter (KF) and robustH∞ filter is also provided. It is shown that the UFIR filter is more robust than the
KF andH∞ filter under the communication delays and missing data. The results are obtained by simulation and
verified experimentally.

Key–Words:Delayed data, missing data, unbiased FIR filter, Kalman filter,H∞ filter.

1 Introduction

In the last two decades, linear estimation has received
much attention due to many possible applications of
science and engineering. Advances of sensors tech-
nology have enabled binding the wireless systems
with the estimation problem in monitoring and control
system such as environmental monitoring, navigation
and control of moving vehicle [1], etc. A common
feature of such systems is the ability to cause signifi-
cant communication delays and data loss due to a va-
riety of physical reasons [2]. Latency, limited band-
width, intermittence, failures in measurements, and
accidental loss of some collected data are some rea-
sons of this problem [3, 4].

In applications such as vehicle tracking, data are
required to arrive at the destination in real time. If
it does not happen, errors occur in control systems.
Overall, it had been inferred [2, 5] that the time delay
and missing data are often the main causes of insta-
bility and poor performance of systems. Mostly two
kinds of approaches were developed to deal with sig-
nals experienced delays and missing data: 1) Kalman
filter (KF), which minimizes the mean square error
(MSE), and 2)H∞ filter, which minimizes estima-
tion errors for maximized error matrices. For the KF,
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noise is required to be white Gaussian and information
about the initial values should be available, which is
not always the case in practice. In other words, the KF
is optimal for linear systems when it matches the sys-
tem perfectly [1, 6, 7, 8, 9, 10]. In turn, theH∞ filter
is designed to have a robust performance to minimize
errors with less information required than for the noise
statistics. Applied to uncertain models, theH∞ filter-
ing estimate is provided by bounding the error matri-
ces for admissible parameter perturbations and delays
[5, 11]. With intensive external impacts, noise is ne-
glected and the MSE is minimized under the worst
performed case [4].

Another way to achieve better robustness is to
provide estimation over most recent data [12] us-
ing finite impulse response (FIR) filters [13]. Dur-
ing decades, the FIR approach has been developed
by many authors [14, 15, 16, 17, 18, 19, 20, 21].
Among the available solutions, the iterative unbiased
FIR (UFIR) algorithm [22, 23], which ignores the
noise statistics and initial values, is considered as most
robust. This filter is blind on given horizons and
bounded-input bounded-output (BIBO) stable. How-
ever, we do not find developments of this approach for
observations with delayed and missing data.

In this paper, we develop the UFIR filter for mea-
surements with discretely delayed and missing data
and provide an analysis of error produced for this fil-
ter in a comparison with the KF andH∞ filter.
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2 Problem Statement

To illustrate the problem, one may consider three typ-
ical scenarios of a process observed with delays and
missing data at a receiver: 1) data may arrive with
no delay, 2) delay may occur with missing data, and
3) missing data may occur with no delay. These sce-
narios can be represented in discrete-time state-space
with equations

xn = Fxn−1 + wn , (1)

ỹn = HFxn−1 , (2)

yn = κnHxn−kn + (1− κn)ỹn + vn , (3)

wheren in the discrete time index corresponding to
time tn and sampling timeT = tn − tn−1, xn ∈ R

K

is the state vector,yn ∈ R
M is the observation vector,

F ∈ R
K×K is not singular,H ∈ R

M×K , κn is the
missing data factor, andkn > 0 is a discrete delay-
step-lag. When data arrive successfully, a data sensor
generatesκn = 1 andκn = 0 otherwise. The ini-
tial statexn−1 is supposed to be known and the noise
vectors,wn ∈ R

K andvn ∈ R
M , are white Gaus-

sian with known covariances,Q = E{wnw
T
n } and

R = E{vnvTn }, and the propertyE{wnv
T
r } = 0 for

all n andr .
The problem can be discussed as follows. Given

model (1)–(3) with delayed and missing data, how can
we apply the standard estimators? The answer can be
found if to transform (1)–(3) to have no latency [24].
We do it by using the backward-in-time solutions and
representxn−kn via xn as

xn−kn = F−kn

(

xn −
kn−1
∑

i=0

F iwn−i

)

. (4)

The observation vector can be switching fromyn
to ỹn if κn take the value of 1 or 0, respectively. For
κn = 1, one can employ (4) and go from (3) to

yn = H̄nxn + v̄n , (5)

where v̄n = vn − H
kn−1
∑

i=0
F−kn+iwn−i, H̄n =

HF−kn , and the covariance of̄vn is given by

R̄n = E{v̄nv̄Tn } = R+ R̃n , (6)

where R̃n = H̄n

kn−1
∑

i=0
F iQF iT H̄T

n . For

B̄n =
[

F−1 F−2 . . . F−kn
]

and wpn,n =
[

wT
pn

wT
pn+1 . . . wT

n

]T
, wherepn = n − kn + 1

andB̄n = 0 andwpn,n = 0 whenkn = 0, we finally
obtain

v̄n = vn −HB̄nwpn,n , (7)

R̄n = R+HB̄nQ̄nB̄
T
nH

T , (8)

where Q̄n = diag[ Q Q . . . Q ] has kn diagonal
components. Provided (5), any linear estimator can
be applied , such as the KF andH∞ filter.

3 UFIR Filter Design

UFIR filtering can be applied to data withkn > 0 if
to extend model (1) and (5) on a horizon[m,n] of N
points, fromm = n −N + 1 to n. Referring to [23],
the extended model becomes

xm,n = ANxm +BNwm,n , (9)

ym,n = Cm,nxm +Gm,nwm,n + vm,n , (10)

where the extended state vectorxm,n and the ex-
tended observation vectorym,n and the extended ma-

trices arexm,n =
[

xTm xTm+1 . . . xTn
]T

, ym,n =
[

yTm yTm+1 . . . yTn
]T

,

AN =
[

I F T . . . FN−1T
]T

, (11)

BN =















I 0 . . . 0 0
F I . . . 0 0
...

...
. ..

...
...

FN−2 FN−3 . . . I 0
FN−1 FN−2 . . . F I















, (12)

Cm,n =















H̄m

H̄m+1F
H̄m+1F

2

...
H̄nF

n−1















, (13)

Gm,n =











H̄m 0 . . . 0
H̄m+1F H̄m+1 . . . 0

...
...

. . .
...

H̄nF
N−1 H̄nF

N−2 . . . H̄n











,(14)

vm,n =















vm − CB̄nwpm,m

vm+1 − CB̄nwpm+1,m+1
...

vn−1 − CB̄nwpn−1,n−1

vn −CB̄nwpn,n















. (15)

Below, we develop the UFIR filter forkn > 0 in
the batch and fast iterative forms.
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3.1 Batch UFIR Filter

Most generally, the FIR estimatêxn , x̂n|n can be
obtained atn in a batch form over data available on
[m,n] as [14]

x̂n = Hm,nym,n , (16)

whereHm,n is thefilter gain. The estimatêxn will
be unbiased if it satisfies the unbiasedness condition
E{xn} = E{x̂n}, whereE{z} means averaging
of z. To find Hm,n obeying this condition, repre-
sentxn on the horizon[m,n] by the last row vec-

tor in (9) asxn = FN−1xm + B
(N)
N wm,n, where

B
(N)
N = [FN−1 FN−2 . . . F I ] is the last row vec-

tor in (12). Substitutinĝxn with (16), in whichym,n

is given by (10), and averaging withE{wm,n} = 0
andE{vm,n} = 0 for known kn-step-lag yields the
unbiasedness constraint

I = Hm,nCm,n , (17)

where

Cm,n =











HF−N+1−km

...
HF−1−kn−1

HF−kn











, (18)

which gives the UFIR filter gainHm,n =
(CT

m,nCm,n)
−1CT

m,n [13] and the batch UFIR estimate
(16) becomes

x̂n = GnCT
m,nym,n , (19)

where ym,n is a vector of real data andGn =
(CT

m,nCm,n)
−1 is the generalized noise power gain

(GNPG) [23].
Let us define errors in the UFIR filtering estimate

x̂n by ǫn = xn − x̂n, wherexn = FN−1xm +

B
(N)
N wm,n is the last row vector in (9) andB(N)

N =

[FN−1 FN−2 . . . F I ] is the last row vector in
(12). The error covariance matrix

Pn = E{ǫnǫTn} (20)

can then be represented as, if we employx̂n =
Hm,nym,n with ym,n given by (10),

Pn = [B
(N)
N −Hm,nGm,n]Q̄N

×[B(N)
m,n −Hm,nGm,n]

T

+Hm,nR̄NHT
m,n , (21)

where Q̄N = diag[Q Q . . . Q ] and R̄N =
diag[R R . . . R ] are square matrices withN diago-
nal elements.

3.1.1 Iterative UFIR Filtering Algorithm

Provided model (1) and (5), the iterative UFIR filter-
ing algorithm [13] can be applied straightforwardly if
to substituteH with H̄n = HF−kn . A pseudo code
of this algorithm forkn > 0 is listed as Algorithm
1, where MI whenκn = 0 is organized by substitut-
ing lost datayn with the predicted observations (lines
4–6), given the initial data on[0, N − 1].

Algorithm 1: Iterative UFIR Algorithm for De-
layed and Missing Data

Data: yn, kn, N , κn
Result: x̂n

1 begin
2 for n = N − 1 : ∞ do
3 m = n−N + 1, s = m+K − 1;
4 if κn = 0 then
5 yn = HFx̂n−1;
6 end if
7 H̄n = HF−kn ;
8 Gs = (CT

m,sCm,s)
−1;

9 x̃s = GsCT
m,sym,s;

10 for l = s+ 1 : n do
11 Gl = [H̄T

l H̄l + (FGl−1F
T )−1]−1;

12 KUF
l = GlH̄

T
l ;

13 x̃l = Fx̃l−1 +KUF
l (yl − H̄lFx̃l−1);

14 end for
15 x̂n = x̃n;
16 end for
17 end
18 † Datay0, y1,...,yN−1 must be available.

4 Simulations

In this section, we will compare errors produced by
the UFIR filter and the KF andH∞ filter, which al-
gorithms can be found in [28]. We will consider
a two-state polynomial model (1)–(3) withκ = 0,

F =

[

1 τ
0 1

]

, H = [ 1 0 ], x0 = [ 1 1 ]T , and

zero mean white Gaussianwn = [ 0 w2n ]
T and vn

with Q = σ2
w2

[

τ2/2 τ/2
τ/2 1

]

andR = σ2
v , where

σw2 = 0.2/s and σv = 2. BecauseQ andR are
typically not known exactly, substitute them in the
algorithms withα2Q and β2R, whereα and β are
positive-valued. We will compare errors via the incre-
ments of the bias corrections gains of the UFIR filter
∆KUF

n , KF ∆KKF
n , andH∞ filter ∆K∞

n .
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4.1 Effect of Latency

Distance measurements are provided at 500 discrete
points with τ = 0.1 s for different constantk-step-
lags that givesNopt = 29 when k = 0. Figure 2
sketches the RMSEs

√
trPn of the UFIR filter, KF,

andH∞ filter as functions ofk for two scenarios when
1) θopt(k = 0) and Nopt(k = 0) are specified at
k = 0 and then applied to arbitraryk and 2)θopt(k)
andNopt(k) are specified and applied to eachk indi-
vidually. The KF is self-tuned tok and we use it as a
benchmark.

In Fig. 1a, we sketch the results forα = β = 1
and Fig. 1b forα = 0.5 andβ = 2, which lead to the
following inferences. Like in thek-step predictors,
errors grow in all filters with an increase ink-step-
lag. Providedθopt(k), andNopt(k) for α = β = 1
(Fig. 1a), the KF produces optimal estimates, which
cannot be improved. A bit better performance of the
H∞ filter (dashed) is rather due to finite data. The
UFIR filter (dashed) is inherently worst here.

Even for smallα = 0.5 andβ = 2 (Fig. 1b),
the KF becomes worst. TheH∞ filter improves the
performance withθopt(k) to be more accurate than the
UFIR filter. By θopt(k = 0) andNopt(k = 0) applied
to allk, theH∞ filter rapidly diverges, while the UFIR
estimate saves the performance. In a span of0 6 k 6
20, factorθopt rapidly reduces from 0.043 to 0.00023,
while Nopt = 29 holds for0 6 k 6 12 and increases
to 33 atk = 20. The UFIR filter is thus more robust
to errors inNopt(k) than theH∞ filter in θopt.

4.2 Inaccurate Error Matrices

Allow Q = Q̌ andR = Ř and substitute in the algo-
rithms asα2Q andβ2R. Investigate effect, whichα
andβ take on the estimation errors. BecauseKUF(k)
is {α, β}-invariant, set∆KUF(k) = 0. Figure 2
sketches∆K1(k) related to the first state as function
of k. Forα = β = 1, we have∆KKF

1 = ∆KUF
1 = 0

and∆K∞
1 = 0 with θ = 0. If α < 1 and/orβ > 1,

extra errors produced by the KF are compensated in
the H∞ filter (Fig. 2) with θ = 0.08 at k = 4,
θ = 0.0239 atk = 8, θ = 0.00898 atk = 12, etc. By
θ(k), theH∞ filter becomes as robust as the UFIR fil-
ter, which is{α, β}-invariant. However, theH∞ filter
diverges withk whenθ is set constant (Fig. 2). Note
that theH∞ filter is not able to reduce∆K∞ caused
byα > 1 and/orβ < 1 with θ > 0, because modelling
errors are not maximized here, as required.

4.3 Model Errors

Consider the above model and, in addition to{α, β},
introduce{η, µ}. Investigate effect of{α, β, η, µ} on

tr
n

P

0 2 4 6 8 10 12 14 16 18 20

1

2

3

k

)0(, =¥ kH q

)(, kH q¥

)0(,UFIR
opt

=kN

)(,UFIR opt kN

KF

1

1

=

=

b

a

(a)

opt

opt

1

2

3

0 2 4 6 8 10 12 14 16 18 20

k

)0(, =¥ kH q

KF

)0(,UFIR
opt

=kN

)(, kH q¥
2

5.0

=

=

b

a

tr
n

P

(b)

opt

opt

Figure 1:Effect of thek-step-lag on the RMSE
√
trPn of

the UFIR filter, KF (solid), andH∞ filter for α2Q = α2Q̌
andβ2R = β2Ř: (a)α = β = 1 and (b)α = 0.5 andβ =
2. Tuning factorsθ andNopt are specified by minimizing
the MSE at 1)k = 0 (dotted) and 2) eachk (dashed).
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=
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Figure 2:Effect of α andβ on∆K1(k) for theKF(α, β)
(solid) andH∞(α, β) filter (dashed). The UFIR filter is
{α, β}-invariant (dotted).
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Figure 3:Typical effects of{α, β, η, µ} andθ on∆K1(k): (a) near full error compensation in theH∞ filter for 0 6 k 6 6
and growing errors in the UFIR filter, (b) local error compensation in theH∞ filter atk = 6 with the UFIR filter outperforming
the KF, and (c) near full error compensation in theH∞ filter for 0 6 k 6 6 with a near constant error in the UFIR filter over
k, which can be compensated. TheH∞ filter always diverges with largek.

the bias correction gains as sketched in Fig. 3 for
the first state. In Fig. 3a, errors in the UFIR filter
grow withk and theH∞ filter operates “ideally” when
0 6 k 6 6. In Fig. 3b, the UFIR filter outperforms
the KF, while theH∞ filter compensates errors only
atk = 6. Finally, in Fig. 3c, the UFIR filter produces
almost equal errors for anyk, which can be compen-
sated algorithmically.

Several other inferences can also be made. Pro-
vided θopt for somek, theH∞ filter is not efficient
with smallerk values and diverges otherwise. Func-
tion ∆KUF(k) is more linear than others and can
be corrected algorithmically. All filters are highly
sensitive toη and theH∞ filter is efficient only if
0.99 < η 6 1. Factorµ does not affect estimates
as much asη and has a much wider allowed range
around unity.

5 Conclusions

An analysis of errors provided in this paper for the
UFIR filter developed for time-stampedkn-step-lag
discretely-delayed and missing data has demonstrated
its higher robustness than in the KF andH∞ filter.
This can be explained by the fact that no informa-
tion is required by the UFIR filter about noise and ini-
tial conditions and the filter becomes blind on given
horizons. Therefore, the UFIR estimate is not af-
fected by undesirable factors as much as in the KF and
H∞ filter at anykn. Extensive simulation based on a
two-state space model representing a tracking prob-
lem have confirmed higher robustness of the UFIR fil-
ter. In fact, as compared to the KF andH∞ filter, the
UFIR filter has demonstrated smaller errors caused by
effects of latency, the invariance to errors in the noise
statistics and error matrices, and lower sensitivity to
model errors caused by mismodeling.
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